ZEB Pilot house Larvik (Multikomfort) As-built

ZEB - KLIMAX

October 12, 2016 Åse Lekang Sørensen, SINTEF

My presentation

- Introduction
- Building design
- Technical installations and energy system
- Performance
- Material emissions
- The ZEB balance
- Economy

ZEB Pilot house Larvik (Multikomfort)

INTRODUCTION

The ZEB pilot house Larvik ("Multikomfort-house")

- Two-storey single-family residential building
- Demonstration and exhibition house
- Heated floor area: 201.5 m²
- **Opening Autumn 2014**

photo: Brødrene Dahl/Paal-André Schwital

Location

• Located near Larvik, by Brødrene Dahl warehouse

Pictures: Google maps

The team

Building owners Design team

Construction Supporting Brødrene Dahl AS and Optimera AS Brødrene Dahl (energy concept), Optimera (building construction), Snøhetta (architect), and the ZEB Research Centre (energy and GHG emissions)

Espen Staer AS Bergersen Flis, Geberit, Glava, Grohe, Gustavsberg, Ifö, Porgrund, Intra, Lyngson, Nilan, Oras, Oso, Pipelife, Schneider Electric, Uponor, Villeroy&Boch, VPI, Grundfos, Lighthouse Company, Aubo, Barkevik, Bergene Holm, Boen, Elfa, Fischer, Gyproc, Isola, Moelven, Natre, Paslode, Velux and Weber

Design criteria: ZEB-OM + transport

Source: A Norwegian ZEB Definition Guideline

ZEB Pilot house Larvik (Multikomfort)

BUILDING DESIGN

The design phase

- Focus on combining high aesthetic quality with comfort and energy efficiency
- Minimizing emissions from construction materials

The building envelope

Reduce the need for heating

- Well insulated
- Airtight

Avoid the need for cooling

- Solar protection (bedroom windows)
- Windows placed shaded from the sun

Construction materials

- Reused bricks are used in a wall inside Thermal mass effect
- Stacks of natural stone and timber in the exterior facade
- Foundation slab based on **timber** and **fibre plate** construction
- Strip foundation to minimize the amounts of concrete
- Low carbon concrete was used
- **Timber based bearings** in light weight frames of outer walls
- Exterior walls are **well insulated**: 350mm glass wool insulation

U-values	Floor	Roof	Walls	Windows and doors
W / m²K	0.080	0.084	0.111	0.75

Illustration: Snøhetta

daylight distribution / solar shading

How to calculate DA ?

- As an example, DIAL+ software is able to calculate DA on one year based in different points in a room.
- The <u>average</u> value for the room is used

Main hypothesis for calculations

Source: Snøhetta

The Research Centre on Zero Emission Buildings

Pictures: Snøhetta

Re-used brick (old barn)

Picture: Snøhetta

0

spacial connection indoor - outdoor

The Research Centre on Zero Emission Buildings

The Research Centre on Zero Emission Buildings

The Research Centre on Zero Emission Buildings

The Research Centre on Zero Emission Buildings

The Research Centre on Zero Emission Buildings

ZEB Pilot house Larvik (Multikomfort)

TECHNICAL INSTALLATIONS AND ENERGY SYSTEM

Conclusion: material optimization / technical optimization

Illustration: Snøhetta

Overview of the energy system

- Electricity: Solar cells
 Battery bank
- Heat: Geothermal heat pump
 Solar thermal panels

Ventilation system: High efficiency heat recovery Grey water heat recovery systems

Energy budget: Energy demand

Energy budget	Energy demand (kWh/year)	Specific energy demand (kWh/m ² /year)
Room heating	4,799	23.8
Ventilation heating	418	2.1
Domestic hot water	3,212	15.9
	(6,424)*	(31.8)*
Fans	765	3.8
Lighting	1,765	8.8
Technical equipment	3,177	15.8
Total net energy demand	14,136	70.2
	(17,348)*	(86.1)*

* Assumption: Recover 50% of the energy in the grey water in heat recovery system

Energy budget: Delivered energy

Energy budget	Delivered energy (kWh/year)	Specific delivered energy (kWh/m ² /year)
Direct electricity	5,707	28.3
Electricity heat pump (ground-	1,014	5.0
source HP)		
Electricity solar energy	144	0.7
Other energy sources (HP in	276	1.4
ventilation)		
Total delivered energy	7,142	35.4

			Delivered energy	
Energy balance (kWh/year)	Energy		Heat from ground- source HP,exhaust	Heat from
Litergy balance (Kwin/year)	demand		air HP and solar	grey water
		Electricity	collectors	system
Room heating and				
ventilation	5 217	1 025	4 192	
Domestic hot water	6 424	409	2 803	3212
Fans, lighting, technical				
equipment	5 707	5 707		
		7 142	6 995	3 212
Total	17 348			17 348

Solar cells and battery bank

- 22.75 kW_p PV system, 150 m², 91 modules (Innotech Solar)
- Each module: 15.5% efficiency, peak power 250 W_p
- Calculated: 19,200 kWh per year
- Connected to the utility grid
- Battery bank with 24 batteries: 48V at 600Ah in total

Solar cells from Innotech solar

DesignBlack - Poly STC* Pmax Wp 240 250 260 Vmpp V 30.2 31.0 31.2 Impp A 8.11 8.22 8.49 V Uoc 37.1 37.6 37.8 A ISC 8.66 8.79 8.98 IR**** A 20 20 20 % 14.6 -15.2 -15.8 ŋ 15.2 15.8 16.4

Calculated electricity production

Geothermal heat pump and Solar thermal panels

- Ground-source-to-water heat pump, 3 kW
 - Cover 80% of the heating load
- Solar thermal collector system, 16.8 m²
 - Cover 20% of the heating load
- Hot water is collected in a 400 liter tank
- Low temperature distribution system

HEWALEX

COMPONENTS OF SOLAR SYSTEMS

FLAT PLATE SOLAR COLLECTORS:

HEWALEX KS2000 TLP

HEWALEX KS2000 SLP

SOLAR COLLECTOR:	K52000 TLP (KS2000 TP)	KS2000 SLP (KS2000 SP)	KS2000 TLP AC (KS2000 TP AC)
Article number	14.22.00 (14.21.00)	11.22.00 (11.21.00)	14.41.00 (14.40.00)
Solar Keymark certificate (PN-EN12975-1,2:2007)	011-75181 F	011-75180 F	011-751693 F
Active (aperture) area, m ²	1,818	1,817	1,827
Gross area (total), m²	2,095	2,094	2,091

Optima Twin Coil - EPTC - gir varme og varmtvann

Radiators

Domestic hot water

Grey water heat recovery systems

Ventilation system

- Balanced, mechanical ventilation system with constant air flows
- Exhaust air heat pump
- Heat exchanger (87% efficiency)

Water system

- Rain water is reused in toilets and for watering the garden
- Rain water from the roof is harvested, mechanically cleaned, and stored in a 6000 litre tank

ZEB Pilot house Larvik (Multikomfort)

PERFORMANCE

Measurements

- Air leakage number: 0.60 air changes per hour
- Energy metering:
 - Electrical consumption, electricity production, thermal energy production and consumption for heating and hot water
 - No-one living in the building
 - Few measurements available yet

Measurements solar collectors

Example sunny day: 60 kWh heat from solar collectors

ZEB Pilot house Larvik (Multikomfort)

THE ZEB BALANCE

Material emissions – from design phase (60 y)

Product phase: 3.6 kg CO_2 eq/m² per year + Material replacement 2.2 kg CO_2 eq/m² per year = 5.8 kg CO_2 eq/m²

As-built estimations, material emissions

- Rough design phase estimations
- Assumed less emissions replaced PV
- CO₂ emissions from batteries
- Estimated increase, rough calculations
- New total annual material emissions

```
5.8 \text{ kg CO}_2 \text{ eq/m}^2/\text{y}
```

- -0.6 kg CO_2 eq/m²/y
- +0.6 kg CO_2 eq/m²/y
- +1.16 kg CO₂ eq/m²/y
- $6.9 \text{ kg CO}_2 \text{ eq/m}^2/\text{y}$

The ZEB balance

3000

- Electricity production solar cells, 19 200 kWh
- Electrical car, 12 000 km
- (A1-3+B4) Emissions building materials and solar cells
- (B6) Electricity demand, 7142 kWh

ZEB Pilot house Larvik (Multikomfort)

ECONOMY

Economy

	A future building similar to the pilot building
Investment, inclusive tax	5.8 million NOK *
Delivered energy to	7,142 kWh + 2,400 kWh
building and el. car	
Annual energy cost,	0 kr **
if 1 NOK/kWh	
Income from plus-energy	4,829 NOK (kWh:
house, if 0.5 NOK/kWh	19,200 -(7,142+2,400))

* Ambitious buildings and technology choices may qualify for support from Enova.
Such support varies, and is not included in the cost efficiency calculation.
** Assume 100 % self-consumption or similar energy price for selling and buying electricity.

Summary ZEB Pilot house Larvik

- An interdisciplinary project team has been involved in the design and construction process
- A number of untraditional passive energy measures are demonstrated
- The demonstration house has gained a lot of attention
- Calculated ZEB balance: ZEB-OM ambition + 7,600 km el car
- Approach is sensitive to material emission accounting and electricity emission factors for import and export of electricity

Takk for meg!

