A large amount of the buildings in Norway is from the 1970s. Many of these buildings have timber frame walls and are now ready to be retrofitted. Application of vacuum insulation panels (VIPs) can make it easier to improve the thermal insulation in building walls with a minimal additional thickness. Retrofitting of buildings using VIPs may therefore be done without large changes to the building, e.g. extension of the roof protruding and fitting of windows. Additionally, U-values low enough to fulfil passive house standars or zero energy building requirements may be achieved. Thus, contribute to a reduction of the energy use and CO2 emissions within the building sector. This work investigates two different ways of retrofitting timber frame walls, one with VIPs on the cold side and one with VIPs on the warm side. A wall module containing four different fields is built and tested between two climate rooms with indoor and outdoor climate, respectively. The module consists of one reference field representing a timber frame wall built according to regulations in the 1970s in Norway, and three fields representing different ways of improving the thermal insulation of the reference field with VIPs. As VIP is a vapour tight barrier, the fields are tested with respect to condensation risk. A new sensor for measuring surface condensation called the wetness sensor is introduced. The results of the experiment show that this method of retrofitting may be acceptable in certain structures within limited climate zones, humidity classes, and building envelopes.