Efficient energy recovery from used air with the goal of reducing energy use is important for realizing low energy houses. Rotary heat exchangers are very energy efficient, but have the drawback of transferring odours from exhaust air to fresh supply air. To avoid this, flat plate heat exchangers are commonly used where odour transfer might cause problems. Nevertheless, these may not properly handle water condensation and frost formation at low outdoor temperatures. The so-called membrane-based energy exchangers are an alternative to the flat plate heat exchanger. In a membrane-based exchanger, moisture is transferred from the humid exhaust air to the dry supply air avoiding condensation at the exhaust airside. In this work, a membrane energy exchanger was compared to a thin non-vapour permeable plastic foil heat exchanger. The study focused on verifying condensation and freezing problems and evaluating the performance of the membrane energy exchanger. The experiments showed that non-permeable heat exchangers have problems with condensation and freezing under test conditions. Under the same conditions, the membrane-based exchanger did not experience the same problems. However, additional problems with swelling of the membrane in high humidity conditions showed that the tested membrane type had drawbacks and needs further development to become commercially applicable.
Efficient energy recovery from used air with the goal of reducing energy use is important for realizing low energy houses. Rotary heat exchangers are very energy efficient, but have the drawback of transferring odours from exhaust air to fresh supply air. To avoid this, flat plate heat exchangers are commonly used where odour transfer might cause problems. Nevertheless, these may not properly handle water condensation and frost formation at low outdoor temperatures. The so-called membrane-based energy exchangers are an alternative to the flat plate heat exchanger. In a membrane-based exchanger, moisture is transferred from the humid exhaust air to the dry supply air avoiding condensation at the exhaust airside. In this work, a membrane energy exchanger was compared to a thin non-vapour permeable plastic foil heat exchanger. The study focused on verifying condensation and freezing problems and evaluating the performance of the membrane energy exchanger. The experiments showed that non-permeable heat exchangers have problems with condensation and freezing under test conditions. Under the same conditions, the membrane-based exchanger did not experience the same problems. However, additional problems with swelling of the membrane in high humidity conditions showed that the tested membrane type had drawbacks and needs further development to become commercially applicable.
Abstract
A frost-free membrane energy exchanger design model is developed combining the conventional ε−NTU method with a frost limit model. A concept of plate performance index is defined to evaluate the net energy saving ability. The frost-free design model and plate performance index are employed for a case study of single-family dwelling with an all-fresh-air air handling unit with a heat/energy recovery exchanger. The membrane energy exchanger, which is able to ensure frost-free operation without extra frost control strategies, is applicable to most cold climates for residential applications. The membrane energy exchanger has a significant energy saving potential compared to conventional plate heat exchangers. Preheating rather than enlarging the energy transfer area is recommended for severe cold climates.
Realisation of Zero Energy Buildings (ZEB) for residential use cannot succeed without: minimising leakages, increasing thermal insulation and using reliable and energy efficient system solutions. However, very airtight houses may have a negative impact on thermal comfort and indoor air quality. Focussing on ventilation systems then becomes a requirement.
In cold climates, temperature differences between indoor and outdoor air often exceed 40 °C during winter. State-of-the-art heat recovery systems may not be able to handle these differences while providing proper air quality and preventing excessively dry indoor air.
The present study of energy recovery systems focuses on apartment buildings located in cold climates countries using central air handling units. Heat exchangers recovering sensible heat are compared with energy exchangers with recovery of both sensible and latent heat. For the latter, both adjacent and non-adjacent solutions are considered.
A specific net energy savings factor is developed taking into account the energy recovered, but also the pressure drops and the variation on the effectiveness of the fan given the installation of the heat/energy recovery.
Heat exchangers are efficient and reliable. Recuperative heat exchangers normally imply no air quality problems, but have severe freezing problems. Regenerative heat exchangers encounter small freezing problems, but do not prevent transfer of odours from extract air to supply air. Regenerative energy exchangers provide an efficient heat and moisture exchange between exhaust and supply air flows, diminishing ice formation and the humidification requirement for indoor air.