Sandwich elements are widely used in the building envelope, in walls and foundations in particular. The thickness of sandwich elements is increasing as the demand for reduced heat loss from the building envelope is required. The building industry is searching for means and alternative materials to reduce the volume of the building envelope, but at the same time obtain the same thermal performance. Sandwich element constructions might be suitable for highly effective insulation materials as VIPs (Vacuum Insulation Panels). The possibilities of optimizing the thermal performance and by the same time decreasing the thickness and reducing the volume of aggregated clay sandwich construction block systems with VIPs has been investigated. Numerical simulations with heat conduction models and also CFD-models have been performed in order to study the optimal design of the block, the influence of thermal bridges and the influence of vertical and horizontal joints on the thermal performance of a wall. The work has resulted in an optimal design for a prototype block which has been produced and general knowledge about the influence of convection in vertical joints. The simulations show that for vertical joints less than 3 mm in width there will be no significant heat transport by convection. The numerical simulations also show that an U-value of 0,08 W/m2K can be achieved for such a system, with a thickness of the block being 300 mm. The work was carried out in the framework of the Norwegian centre for Zero Emission Buildings (ZEB).

Published in Conference papers

The introduction of dynamic envelope components and systems can have a significant reduction effect on heating and cooling demands. In addition, it can contribute to reduce the energy demand for artificial lighting by better utilization of the daylight. One of these promising technologies is Phase Change Materials (PCM). Here, the latent heat storage potential of the transition between solid and liquid state of a material is exploited to increase the thermal mass of the component. A PCM layer incorporated in a transparent component can increase the possibilities to harvest energy from solar radiation by reducing the heating/cooling demand and still allowing the utilization of daylight. Measurements have been performed on a state-of-the-art window that integrates PCM using a large scale climate simulator. The glazing unit consists of a four-pane glazing with an integrated layer that dynamically controls the solar transmittance (prismatic glass) in the outer glazing cavity. The innermost cavity is filled with a PCM, contained into transparent plastic containers. The introduction of dynamic components in the building envelope makes the characterization of static performance (e.g. the thermal transmittance, U-value; the solar heat gain coefficient) insufficient in giving the full picture regarding the performance of the component in question. This article presents a series of measurements, and the related methodologies, carried out on a window with incorporated PCM. The tests have been carried out using several test cycles comprised of temperature and solar radiation cycling, where the aim has been to delve deeper into the possibilities for characterization of dynamic building envelope components by full scale testing in a climate simulator.

Published in Conference papers

An office building of about 2000 m2 heated floor area is being designed for the Norwegian Defense Estates Agency (Forsvarsbygg). The building will be located at Haakonsvern, about 15 km from the centre of Bergen, Norway. The design aims at meeting the ZEB criterion of net zero energy balance for building operation during a year. The energy for operation of the plug loads (computers, printers, etc.) is not included in the balance.

Published in Conference papers

Search our website

Sort publications by:

Ascending order

Filter Publications: