The optical characteristics of an advanced glazing system are presented in this paper. The investigated glazing system is based on the incorporation of a paraffin-based Phase Change Material (PCM) into a transparent component, made of two extra-clear glass panes and a cavity where the PCM layer is placed. Due to the highly scattering property of the system (when the PCM is in solid state), the use of a large integrating sphere equipment (75 cm diameter) is necessary to obtain reliable results. The spectral transmission, reflection and absorption coefficients of the PCM glazing system are measured between 400 and 2000 nanometers,…
Published in Journal papers
The adoption of Phase Change Materials (PCMs) in glazing systems was proposed to increase the heat capacity of the fenestration, being some PCMs partially transparent to visible radiation. The aim of the PCM glazing concept was to let (part) of the visible spectrum of the solar radiation enter the indoor environment, providing daylighting, while absorbing (the largest part of) the infrared radiation. In this paper, the influence of the PCM glazing configuration is investigated by means of numerical simulations carried out with a validated numerical model. Various triple glazing configurations, where one of the two cavities is filled with a…
Published in Journal papers
Monodisperse hollow silica nanospheres have been prepared by using a polystyrene nanosphere template-assistant approach and their potential as antireflection (AR) coatings for window applications has been discussed. The as-prepared hollow silica nanospheres have a typical inner diameter of 200 nm and a shell thickness of 15–20 nm. The AR effect over the ultraviolet-visible-near infrared spectral region has been observed for the hollow silica nanospheres, with a minimized reflection of about 5.2 % at 500 nm, compared to 8.5 % of a plain float glass substrate. By modifying the structural features of the hollow silica nanospheres, their AR properties can be…
Published in Journal papers
Building Integrated Photovoltaic (BIPV) is an important source of renewable energy production for Zero Emission Buildings, even in Norwegian climate. In the planned Powerhouse 1 building at Brattøra in Trondheim the idea to reach a zero emission building level is to use PVs as a roofing material covering the entire roof. Challenges and questions raised in the design process of this building have motivated the work reported here.
Published in Reports
For første gang lærer arkitektstudenter å tegne hus som produserer energi. Artikkel i Teknisk Ukeblad, skrevet av Joachim Seehusen.
Published in Media contributions

Search our website

Sort publications by:

Ascending order

Filter Publications: