Er "intellegente byer" veien å gå? Siden nesten 2/3 av vårt energiforbruk er tilknyttet urbane miljø, vil såkalte "Smart Cities" eller intellegente byer spille en betydelig rolle vedrørende energiffektivitet.


Abstract

This paper presents a review of projects where hybrid photovoltaic-thermal (PV/T) systems are used in buildings. PV/T systems convert solar radiation to electricity and heat simultaneously, in one module. The output of both electricity and heat suggests that the technology can be suited for use in buildings, especially when the available area for installation is limited. The market and research activities related to PV/T technology has increased in recent years. This article adds to existing reviews on PV/T technology by focusing on the building perspective. Different strategies for the use of PV/T in buildings are discussed, and examples of building projects are presented. An attempt is also made to assess to suitability of different PV/T technologies for use in buildings. Finally, the regional variations in market and applications are discussed.


Abstract

This study examined an integrated solution of the building energy supply system consisting of flat plate solar thermal collectors in combination with a ground-source heat pump and an exhaust air heat pump for the heating and cooling, and production of domestic hot water. The supply energy system was proposed to a 202 m2 single-family demo dwelling (SFD), which is defined by the Norwegian Zero Emission Building standard. The main design parameters were analyzed in order to find the most essential parameters, which could significantly influenced the total energy use. This study found that 85% of the total heating demand of the SFD was covered by renewable energy. The results showed that the solar energy generated by the system could cover 85–92% and 12–70% of the domestic hot water demand in summer and winter respectively. In addition, the solar energy may cover 2.5–100% of the space heating demand. The results showed that the supply air volume, supply air and zone set point temperatures, auxiliary electrical volume, volume of the DHW tank, orientation and tilt angle and the collector area could influenced mostly the total energy use.


Search our website

Sort publications by:

Ascending order

Filter Publications: