The main direction of the thesis is analyzing the impact on solar access and energy demand of different building mass in linear building forms. The study model of this work is a current ongoing project - a suburb sustainable residential community design project locates in Ådland, Bergen, Norway. The work mainly consists of two parts: theory and project analyses. Both two parts are focusing on reducing environmental impact of suburb sustainable residential communities. More specifically, the theory is aiming on finding out the critical design and energy issues for suburb sustainable residential communities. The project is aiming on using the strategies from theory part and analyzing critical design issues of solar access and energy issues of heating demand reduction with different building masses.
The current practice of building energy upgrade typically uses thick layers of insulation in order to comply with the energy codes. Similarly, the Norwegian national energy codes for residential buildings are moving towards very low U-values for the building envelope. New and more advanced materials, such as vacuum insulation panels (VIPs) and aerogel, have been presented as alternative solutions to commonly used insulation materials. Both aerogel and VIPs offer very high thermal resistance, which is a favourable characteristic in energy upgrading as the same insulation level can be achieved with thinner insulation layers.
This paper presents the results of energy use and lifecycle emissions calculations for three different insulation materials (mineral wool, aerogel, and vacuum insulation panels) used to achieve three different insulation levels (0.18 W/m2 K, 0.15 W/m2 K, and 0.10 W/m2 K) in the energy retrofitting of an apartment building with heat pump in Oslo, Norway. As advanced insulation materials (such as VIP and aerogel) have reported higher embodied emissions per unit of mass than those of mineral wool, a comparison of performances had to be based on equivalent wall U-values rather than same insulation thicknesses. Three different electricity-to-emissions conversion factors (European average value, a model developed at the Research Centre on Zero Emission Buildings – ZEB, and the Norwegian inland production of electricity) are used to evaluate the influence of the lifecycle embodied emissions of each insulation alternative. If the goal is greenhouse gas abatement, the appraisal of buildings based solely on their energy use does not provide a comprehensive picture of the performance of different retrofitting solutions.
Results show that the use of the conversion factor for Norwegian inland production of electricity has a strong influence on the choice of which of the three insulation alternatives gives the lowest lifecycle emissions.
The article's aim is to present user experiences with passive houses and zero-energy buildings. The focus is on the interaction between the building and the users, specifically on how user interfaces, knowledge, and commitment influence the use of the building and the level of energy consumption awareness.
The considerable amount of energy spent on the construction, maintenance, and demolition of buildings draws attention to sustainable development in the construction sector. Regarded as both tools and frameworks, laws are expected to sustain and speed technological innovation. With the STS (Science and Technology Studies) theory of domestication and in-depth interviews with building researchers studying zero emission buildings in Norway, I discuss the role of research engineers in the domestication of law, that is, the translation of European Directives for building codes and technical requirements, and the mediation of these legal frameworks for industry and practitioners. I classify two main and opposing ways of domesticating the law in ‘inside-the-box’ and ‘outside-the-box’ approaches. The domestication of law accounts for numerous aspects and thus simultaneously becomes a technological, cultural, political and legislative activity. The paper contributes to a better understanding of the legislative roles of research engineers.
Abstract
The ambition level for the zero emission neighbourhood Aadland is that the area will be self supplied with both thermal and electric energy. This paper presents how emissions from operation of the 500 dwellings are offset by on-site renewable energy production. The paper also describes a procedure for how to deal with embodied emissions from materials in an early stage design phase. The study verifies that it is possible to reach a zero emission balance for the neighbourhood. Zero emission from operation is achievable as an average for the neighbourhood. For individual zero emission buildings this also includes embodied emissions from materials and construction in a lifecycle perspective. Qualitative requirements for emissions from materials are defined for all buildings in the neighbourhood.