Hele 1556 kvadratmeter med solceller gjør at Norge får sitt første plusshus i Bærum.
Artikkelen skrevet av Caroline Drefvelin.
In Norway, a large portion of the building stock originates from the period from 1955 to 1990. Many of these buildings fail to comply with the current building regulations regarding the energy consumption. In this study, the possibility for upgrading a hypothetical apartment building with an oil-based heating system has been investigated employing simulations from the IDA Indoor Climate and Energy software. For the construction of the original building, customs and regulations from the period 1981-90 were employed, and the building envelope was upgraded to the requirements of the Norwegian research centre on Zero Emission Buildings. Two alternative heating systems have been investigated: solar thermal collectors (i) alone and (ii) as combined with borehole thermal storage and a ground-source heat pump. For each case, the energy consumption, thermal comfort and indoor climate were studied. The simulations predict a reduction in the total annual heat demand to one third of the original with the upgrading. For the alternative heating systems, with solar collectors alone the demand for additional electric heating was still considerable, however in the combined system it was negligible. Regarding thermal comfort, in the upgraded building longer periods with elevated temperatures were observed.
The optical characteristics of an advanced glazing system are presented in this paper. The investigated glazing system is based on the incorporation of a paraffin-based Phase Change Material (PCM) into a transparent component, made of two extra-clear glass panes and a cavity where the PCM layer is placed. Due to the highly scattering property of the system (when the PCM is in solid state), the use of a large integrating sphere equipment (75 cm diameter) is necessary to obtain reliable results. The spectral transmission, reflection and absorption coefficients of the PCM glazing system are measured between 400 and 2000 nanometers, and the integrated values are calculated according to the relevant standards. The optical properties are determined with a maximum relative error of 4% (on the sum of the transmission, reflection and absorption coefficients), when the PCM layer is either in complete solid state or liquid state. The average error for all the optical properties is 2%. Different thicknesses of the PCM layer are used in order to assess the dependency of the optical properties on the PCM layer thickness. The angular dependency is also investigated for beam angle up to 45 deg