Zero Energy Buildings (ZEBs) are considered as one of the key elements to meet the Energy Strategy of the European Union. This paper investigates cost-optimal solutions for the energy system design in a ZEB and the subsequent grid impact. We use a Mixed Integer Linear (MILP) optimisation model that simultaneously optimises the building’s energy system design and the hourly operation. As a ZEB have onsite energy generation to compensate for the energy consumption, it is both importing and exporting electricity. The hourly time resolution identifies the factors that influence this import/export situation, also known as the building’s grid impact. An extensive case study of a multi-family house in Germany is performed. The findings show that the energy system design and the grid impact greatly depend on the ZEB definition, the existing policy instruments and on the current energy market conditions. The results indicate that due to the feed-in-tariff for PV, the cost-optimal energy design is fossil fuelled CHP combined with a large PV capacity, which causes large grid impacts. Further, we find that heat pumps are not a cost-optimal choice, even with lower electricity prices or with increased renewables in the electric power system.
Abstract
Detailed knowledge of electricity demand is essential for power system planning and operation. EUs 20-20-20 targets will increase the development of more energy efficient buildings as all new buildings shall be “nearly zero energy buildings” by 2020. The result from this ambition is that so-called passive buildings and nearly-net-zero-energy-buildings (nZEB), with lower energy demand, or even onsite power generation, will significantly change the way buildings are integrated in the power system. System operators must consequently prepare for changes in load profiles. However, the knowledge on the aggregated impact of nZEBs is so far limited because the actual number of such buildings is still very small. This paper contributes to this knowledge gap by estimating the aggregated effect on electricity demand profiles.
The load modelling is based on a statistical approach deriving hourly electricity load profiles of non-residential buildings based on measurements of 100 buildings. The profiles will be used as basis in further work to study the impact of a
large rollout of ZEBs on the power system.
Index Terms-- zero energy buildings (ZEB), load modelling, load
profiles, regression, non-residential buildings, and statistics.